Sparks and Deterministic Constructions of Binary Measurement Matrices from Finite Geometry

نویسندگان

  • Shu-Tao Xia
  • Xin-Ji Liu
  • Yong Jiang
  • Hai-Tao Zheng
چکیده

For a measurement matrix in compressed sensing, its spark (or the smallest number of columns that are linearly dependent) is an important performance parameter. The matrix with spark greater than 2k guarantees the exact recovery of ksparse signals under an l0-optimization, and the one with large spark may perform well under approximate algorithms of the l0-optimization. Recently, Dimakis, Smarandache and Vontobel revealed the close relation between LDPC codes and compressed sensing and showed that good parity-check matrices for LDPC codes are also good measurement matrices for compressed sensing. By drawing methods and results from LDPC codes, we study the performance evaluation and constructions of binary measurement matrices in this paper. Two lower bounds of spark are obtained for general binary matrices, which improve the previously known results for real matrices in the binary case. Then, we propose two classes of deterministic binary measurement matrices based on finite geometry. Two further improved lower bounds of spark for the proposed matrices are given to show their relatively large sparks. Simulation results show that in many cases the proposed matrices perform better than Gaussian random matrices under the OMP algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic constructions of compressed sensing matrices

Compressed sensing is a new area of signal processing. Its goal is to minimize the number of samples that need to be taken from a signal for faithful reconstruction. The performance of compressed sensing on signal classes is directly related to Gelfand widths. Similar to the deeper constructions of optimal subspaces in Gelfand widths, most sampling algorithms are based on randomization. However...

متن کامل

Explicit RIP Matrices in Compressed Sensing from Algebraic Geometry

Compressed sensing was proposed by E. J. Candés, J. Romberg, T. Tao, and D. Donoho for efficient sampling of sparse signals in 2006 and has vast applications in signal processing. The expicit restricted isometry property (RIP) measurement matrices are needed in practice. Since 2007 R. DeVore, J. Bourgain et al and R. Calderbank et al have given several deterministic cosntrcutions of RIP matrice...

متن کامل

New Construction of Deterministic Compressed Sensing Matrices via Singular Linear Spaces over Finite Fields

As an emerging approach of signal processing, not only has compressed sensing (CS) successfully compressed and sampled signals with few measurements, but also has owned the capabilities of ensuring the exact recovery of signals. However, the above-mentioned properties are based on the (compressed) sensing matrices. Hence the construction of sensing matrices is the key problem. Compared with the...

متن کامل

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

Constructions and families of covering codes and saturated sets of points in projective geometry

In a recent paper by this author, constructions of linear binary covering codes are considered. In this work, constructions and techniques of the earlier paper are developed and modified for q-ary linear nonbinary covering codes, q 2 3, and new constructions are proposed. The described constructions design an infinite family of codes with covering radius R based on a starting code of the same c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1301.5952  شماره 

صفحات  -

تاریخ انتشار 2013